Hidetoshi Arakawa

Afinação e Temperamento

Teoria e Prática

Suplemento

© Hidetoshi Arakawa 2004

Edição do Autor Campinas, SP Brasil

Hidetoshi Arakawa Caixa Postal 6042 Campinas, SP 13083-970 arakawa@terra.com.br

Prefácio do Suplemento

No Estudo de escalas e temperamentos empregam-se, tradicionalmente, cálculos à base de razão, os únicos considerados exatos. As razões demonstram, além do mais, a estrutura das escalas, quinta pura representada com número 3 e terça pura com número 5. No entanto, para suprimir a dificuldade de visualização do tamanho, em razão, usa-se a expressão cento, criada por Ellis. Para transformar razão em cento é necessário usar logaritmo. Apesar de facilitada com o cálculo de expoente, a soma e a subtração, a expressão convencional de cento resulta em número infinito, por não ser reversível à razão, exceto no temperamento igual. Além disto no cento convencional desaparece estrutura da escala.

Para corrigir esta deficiência, o autor criou uma notação alternativa, baseada em cento e comas. O princípio da notação é a posição das notas do igual temperamento, múltiplos de cem, mais a discrepância com frações das comas. A discrepância demonstra a estrutura da escala. O valor resultante dessa notação é exato e reversivel à razão.

Para achar os valores aproximados em cento é necessário apenas ter os valores das comas calculados em cento. O resultado, uma vez transformado em cento convencional, não pode mais ser reversível à razão.

No livro principal, o emprego desta notação e sua trasformação para razão são detalhamente discutidos. Neste suplemento trata-se da conversão da razão para a notação alternativa de cento, completando-se assim o ciclo cento-razão-cento da notação alternativa.

As razões de sete (septimal ratios) também são discutidas neste suplemento.

Embora alguns tenham cido demonstrados no livro principal, todos os exemplos são acompanhados de reversão à razão.

Campinas, 15 de fevereiro de 2004

Hidetoshi Arakawa

Conteúdo

Transformar Razão em Cento	
1. Princípio da Transformação da Razão em Cento	137
2. Sétima Maior da Escala Pitagórica	138
3. Semitom Diatônico da Escala Pitagórica	138
4. Semitom Cromático da Escala Pitagórica	
5. Quinta do Médio Tom	139
6. Diese Menor	140
7. Quinta de Lobo do Médio Tom	141
8. Terça Menor Pura	
9. Diese Maior	142
10. Quinta do Temperamento de -1/6 K	143
11. Quinta de Lobo do Temperamento de -1/6 K	144
12. Schisma	
13. Quinta de Helmholtz	145
14. Quinta de -1/4 K + 1/2 P	145
Razões de Sete	
1. Princípio do Cálculo das Razões de Sete	146
2. Quinta das Razões de Sete	147
3. Quinta Diminuita das Razões de Sete	148
4. Terça Maior das Razões de Sete	148
5. Terça Menor das Razões de Sete	150
6. Tom das Razões de Sete	150

Transformar razão em cento

1. Princípio da transformação da razão em cento

No estudo convencional de escalas e temperamentos com razão de freqüência, o cálculo de centos se faz por meio de logaritmos, usando a calculadora científica. O método alternativo, criado pelo autor deste suplemento, permite calcular centos sem logaritmo. Ele serve para a razão de freqüência expressa em $5^m \cdot 3^n \cdot 2^o$. Os símbolos m, n e o podem representar números inteiros ou razões expressadas em fração. Todas as escalas e temperamentos tradicionais pertencem a esta categoria.

No cálculo de cento são utilizadas a quinta pura de uma oitava acima, na razão de freqüência de 1:3, e a terça pura de duas oitavas acima, na razão de freqüência de 1:5. Expressam-se como segue.

Quinta pura V na razão de 2:3

$$V = 700 + \frac{1}{12}P\tag{1}$$

Quinta pura V de uma oitava acima, na razão de 1:3

$$V + VIII = 700 + \frac{1}{12}P + 1200$$
$$= 1900 + \frac{1}{12}P$$
 (2)

Terça pura III na razão de 4:5

$$III = 400 + \frac{4}{12}P - K \tag{3}$$

Terça pura III de duas oitavas acima, na razão de 1:5

$$III + 2VIII = \left(400 + \frac{4}{12}P - K\right) + 2 \times 1200$$
$$= 2800 + \frac{4}{12}P - K \tag{4}$$

Empregando-se (2) e (4), a fórmula para calcular centos I_{centos} expressa-se assim:

$$I_{\text{centos}} = m \left(2800 + \frac{4}{12}P - K \right) + n \left(1900 + \frac{1}{12}P \right) + o \times 1200$$
 (5)

A maneira de calcular cento aplicando a fórmula (5) passa a ser explicada em exemplos com intervalos conhecidos.

2. Sétima Maior da Escala Pitagórica

A razão da sétima maior da escala pitagórica VII_P é representada por

$$VII_{P} = 3^5 \cdot 2^{-7} \tag{6}$$

Como m, n e o da fórmula (5) ficam 0, 5 e -7, a fórmula (6) expressa-se por

$$VII_{P} = 5\left(1900 + \frac{1}{12}P\right) - 7 \times 1200$$

$$= 1100 + \frac{5}{12}P$$
(7)

A fórmula (7) é reversível à razão por meio da expressão

$$VII_{P} = 2^{\frac{11}{12}} (3^{12} \cdot 2^{-19})^{\frac{5}{12}}$$
$$= 3^{5} \cdot 2^{-7}$$

3. Semitom Diatônico da Escala Pitagórica

A razão do semitom diatônico da escala pitagórica $T_{\mbox{\scriptsize SDP}}$ é

$$T_{\text{SDP}} = 3^{-5} \cdot 2^8 \tag{8}$$

Como m, n e o da fórmula (5) ficam 0, -5 e 8, $T_{\rm SDP}$ da fórmula (8) expressa-se por

$$T_{\text{SDP}} = -5\left(1900 + \frac{1}{12}P\right) + 8 \times 1200$$
$$= 100 - \frac{5}{12}P \tag{9}$$

A fórmula (9) é reversível à razão da seguinte maneira

$$T_{\text{SDP}} = 2^{\frac{1}{12}} \left(3^{12} \cdot 2^{-19} \right)^{\frac{5}{12}}$$
$$= 3^{-5} \cdot 2^{8}$$

4. Semitom Cromático da Escala Pitagórica A razão do semitom cromático da escala pitagórica $T_{\rm scp}$ é

$$T_{\rm scP} = 3^7 \cdot 2^{-11} \tag{10}$$

A expressão em cento da fórmula (10) fica assim

$$T_{\text{scP}} = 7 \left(1900 + \frac{1}{12} P \right) - 11 \times 1200$$

$$= 100 + \frac{7}{12} P \tag{11}$$

O valor da fórmula (11) é igual à posição da nota Dó sustenido da escala pitagórica. Em todos os intervalos dessa escala o m da fórmula (5) é 0.

5. Quinta do Médio Tom

A razão da quinta do médio tom V_0 é

$$V_0 = 5^{\frac{1}{4}} \tag{12}$$

Para mudar a fórmula (12) em cento, os valores de m, n e o da fórmula (5) ficam 1/4, 0 e 0; a quinta do médio tom expressa-se por

$$V_0 = \frac{1}{4} \left(2800 + \frac{4}{12} P - K \right)$$
$$= 700 + \frac{1}{12} P - \frac{1}{4} K \tag{13}$$

A fórmula (13) é reversível à razão com a expressão

$$V_0 = 2^{\frac{7}{12}} \left(3^{12} \cdot 2^{-19} \right)^{\frac{1}{12}} \left(5^{-1} \cdot 3^4 \cdot 2^{-4} \right)^{-\frac{1}{4}}$$
$$= 5^{\frac{1}{4}}$$

6. Diese Menor

A razão da díese menor D_m apresenta-se assim

$$D_{\rm m} = 5^{-3} \cdot 2^{7} \tag{14}$$

Como os valores de m, n e o da fórmula (5) ficam -3, 0 e 7, a díese menor $D_{\scriptscriptstyle \rm m}$ é representada por

$$D_{m} = -3\left(2800 + \frac{4}{12}P - K\right) + 7 \times 1200$$

$$= 3K - P$$
(15)

A fórmula (15) mostra a diferença entre 7 oitavas e 3 terças maiores puras de duas oitavas acima, fórmula (4). Como uma terça maior pura de duas oitava acima é composta de 4 quintas de V_0 da fórmula (13), a fórmula (15) é a diferença entre 7 oitavas e 12 quintas do médio tom V_0 , como demonstrado a seguir

$$D_{\rm m} = -3\left(2800 + \frac{4}{12}P - K\right) + 7 \times 1200$$

$$= -3\left\{4\left(700 + \frac{1}{12}P - \frac{1}{4}K\right)\right\} + 7 \times 1200$$

$$= 7VIII - 12V_0 \tag{17}$$

A fórmula (15) pode ser modificada da seguinte maneira

$$D_{m} = -3\left(2800 + \frac{4}{12}P - K\right) + 7 \times 1200$$

$$= -3(III + 2VIII) + 7VIII$$

$$= VIII - 3III$$
 (18)

A fórmula (17) é a definição original do díese menor. O díese menor da fórmula (16) é reversível à razão com

$$D_{m} = (5^{-1} \cdot 3^{4} \cdot 2^{-4})^{3} (3^{12} \cdot 2^{-19})^{-1}$$
$$= 5^{-3} \cdot 2^{7}$$

7. Quinta de Lobo do Médio Tom

A razão da quinta de lobo do médio tom V_1 é expressa por

$$V_{1} = 5^{-\frac{11}{4}} \cdot 2^{7} \tag{19}$$

Como m, n e o da fórmula (5) são -11/4, 0 e 7, expressão em cento da fórmula (19) fica

$$V_{1} = -\frac{11}{4} \left(2800 + \frac{4}{12} P - K \right) + 7 \times 1200$$

$$= 700 - \frac{11}{12} P + \frac{11}{4} K$$

$$= \left(700 + \frac{1}{12} P - \frac{1}{4} K \right) + 3K - P$$
(20)

A fórmula (20) pode ser modificada a seguinte maneira

$$V_{1} = -\frac{11}{4} \left(2800 + \frac{4}{12}P - K \right) + 7 \times 1200$$

$$= -11 \left(700 + \frac{1}{12}P - \frac{1}{4}K \right) + 7 \times 1200$$

$$= -11V_{0} + 7VIII$$

$$7VIII = 11V_{0} + V_{1}$$
(22)

A fórmula (22) demonstra que onze quintas normais e uma quinta de lobo formam sete oitavas.

A fórmula (21) é reversível à expressão cento por meio de

$$V_{1} = 2^{\frac{7}{12}} (3^{12} \cdot 2^{-19})^{\frac{11}{12}} (5^{-1} \cdot 3^{4} \cdot 2^{-4})^{\frac{11}{4}}$$
$$= 5^{-\frac{11}{4}} \cdot 2^{7}$$

Na fórmula (5) para médio tom, n é sempre 0.

8. Terça Menor Pura

A razão da terça menor pura expressa-se assim

$$III_{m} = 5^{-1} \cdot 3 \cdot 2 \tag{23}$$

A fórmula (23) em centos da terça menor pura fica

$$III_{m} = -\left(2800 + \frac{4}{12}P - K\right) + \left(1900 + \frac{1}{12}P\right) + 1200$$

$$= 300 - \frac{3}{12}P + K \tag{24}$$

A terça menor pura pode ser expressa assim

$$III_{m} = -\left(2800 + \frac{4}{12}P - K\right) + \left(1900 + \frac{1}{12}P\right) + 1200$$

$$= \left(700 + \frac{1}{12}P\right) - \left(400 + \frac{4}{12}P - K\right)$$

$$= V - III$$
(25)

A fórmula (24) é transformada em cento com a expressão

$$III_{m} = 2^{\frac{3}{12}} (3^{12} \cdot 2^{-19})^{-\frac{3}{12}} (5^{-1} \cdot 3^{4} \cdot 2^{-4})$$
$$= 5^{-1} \cdot 3 \cdot 2$$

9. Díese Maior

A razão de díese maior $D_{_{\rm M}}$ é

$$D_{\rm M} = 5^{-4} \cdot 3^4 \cdot 2^3 \tag{26}$$

A fórmula (26) é convertida a cento por

$$D_{M} = -4\left(2800 + \frac{4}{12}P - K\right) + 4\left(1900 + \frac{1}{12}P\right) + 3 \times 1200$$
 (27)
= $4K - P$ (28)

A fórmula (27) é modificada da seguinte maneira

$$D_{M} = -4\left(2800 + \frac{4}{12}P - K\right) + 4\left(1900 + \frac{1}{12}P\right) + 3 \times 1200$$

$$= 4\left\{\left(700 + \frac{1}{12}P\right) - \left(400 + \frac{4}{12}P - K\right)\right\} - 1200$$

$$= 4(V - III) - VIII$$

$$= 4III_{m} - VIII$$
(29)

A fórmula (29) é a definição de díese maior.

A fórmula (28) é reversível à expressão cento do seguinte modo

$$D_{\rm M} = (5^{-1} \cdot 3^4 \cdot 2^{-4})^4 (3^{12} \cdot 2^{-19})^{-1}$$
$$= 5^{-4} \cdot 3^4 \cdot 2^3$$

10. A quinta do Temperamento de -1/6 K

A razão da quinta do temperamento de -1/6 K, $V_{\rm SC}$ é demonstrada por

$$V_{\rm SC} = 5^{\frac{1}{6}} \cdot 3^{\frac{1}{3}} \cdot 2^{-\frac{1}{3}} \tag{30}$$

A fórmula (30) é transformada em cento pela expressão

$$V_{\text{sc}} = \frac{1}{6} \left(2800 + \frac{4}{12} P - K \right) + \frac{1}{3} \left(1900 + \frac{1}{12} P \right) - \frac{1}{3} \times 1200$$
$$= 700 + \frac{1}{12} P - \frac{1}{6} K \tag{31}$$

A fórmula (31) é reversível a cento como se demonstra a seguir

$$V_{\text{SC}} = 2^{\frac{7}{12}} \left(3^{12} \cdot 2^{-19} \right)^{\frac{1}{12}} \left(5^{-1} \cdot 3^4 \cdot 2^{-4} \right)^{-\frac{1}{6}}$$
$$= 5^{\frac{1}{6}} \cdot 3^{\frac{1}{3}} \cdot 2^{-\frac{1}{3}}$$

11. Quinta de Lobo do Temperamento de -1/6 K

A razão da quinta do lobo do temperamento de -1/6 K, $V_{\rm SCL}$ representa-se assim

$$V_{\text{SCL}} = 5^{-\frac{11}{6}} \cdot 3^{-\frac{11}{3}} \cdot 2^{\frac{32}{3}}$$
 (32)

A fórmula (32) é transformada em cento pela expressão

$$\begin{split} V_{\text{SCL}} &= -\frac{11}{6} \left(2800 + \frac{4}{12} P - K \right) - \frac{11}{3} \left(1900 + \frac{1}{12} P \right) + \frac{32}{3} \times 1200 \\ &= 700 - \frac{11}{12} P + \frac{11}{6} K \\ &= \left(700 - \frac{1}{12} P + \frac{1}{6} K \right) + 2K - P \\ &= \left(700 + \frac{1}{12} P \right) + \frac{11}{6} K - P \end{split}$$

A fórmula (33) é convertida à razão por meio de

$$V_{\text{SCL}} = 2^{\frac{7}{12}} (3^{12} \cdot 2^{-19})^{\frac{11}{12}} (5^{-1} \cdot 3^4 \cdot 2^{-4})^{\frac{11}{6}}$$
$$= 5^{\frac{-11}{6}} \cdot 3^{\frac{-11}{3}} \cdot 2^{\frac{32}{3}}$$

12. Schisma

A razão da schisma S é representada por

$$S = 5 \cdot 3^8 \cdot 2^{-15} \tag{34}$$

A fórmula acima é transformada em cento pela expressão

$$S = \left(2800 + \frac{4}{12}P - K\right) + 8\left(1900 + \frac{1}{12}P\right) - 15 \times 1200$$
$$= P - K \tag{35}$$

A fórmula (35) é a definição da schisma.

A fórmula (35) é transformada em razão da seguinte maneira

$$S = (3^{12} \cdot 2^{-19}) (5^{-1} \cdot 3^4 \cdot 2^{-4})^{-1}$$
$$= 5 \cdot 3^8 \cdot 2^{-15}$$

13. Quinta de Helmholtz

A razão da quinta de Helmholtz expressa-se por

$$V_{\rm H} = 5^{-\frac{1}{8}} \cdot 2^{\frac{7}{8}} \tag{36}$$

A fórmula (36) é transformada em cento com a expressão

$$V_{H} = -\frac{1}{8} \left(2800 + \frac{4}{12}P - K \right) + \frac{7}{8} \times 1200$$

$$= 700 - \frac{1}{24}P + \frac{1}{8}K$$

$$= \left(700 + \frac{1}{12}P \right) - \frac{1}{8}(P - K)$$

$$= V - \frac{1}{8}S$$
(37)

A fórmula (37) é reversível à razão por meio de

$$V_{\rm H} = 2^{\frac{7}{12}} \left(3^{12} \cdot 2^{-19} \right)^{-\frac{1}{24}} \left(5^{-1} \cdot 3^4 \cdot 2^{-4} \right)^{\frac{1}{8}}$$
$$= 5^{-\frac{1}{8}} \cdot 2^{\frac{7}{8}}$$

14. Quinta de -1/4 K + 1/2 P

Uma quinta de -1/4 K + 1/2 P, V_{DC} é representada por

$$V_{\rm DC} = 5^{\frac{1}{4}} \cdot 3 \cdot 2^{-\frac{19}{12}} \tag{38}$$

A fórmula (38) é transformada da seguinte maneira

$$V_{DC} = \frac{1}{4} \left(2800 + \frac{4}{12}P - K \right) + \left(1900 + \frac{1}{12}P \right) - \frac{19}{12} \times 1200$$
$$= 700 + \frac{2}{12}P - \frac{1}{4}K$$
(39)

A fórmula (39) é reversível à razão através de

$$V_{DC} = 2^{\frac{7}{12}} (3^{12} \cdot 2^{-19})^{\frac{2}{12}} (5^{-1} \cdot 3^4 \cdot 2^{-4})^{-\frac{1}{4}}$$
$$= 5^{\frac{1}{4}} \cdot 3 \cdot 2^{\frac{19}{12}}$$

Razões de Sete

1. Princípio do Cálculo da Razões de Sete

Razões de sete (septimal ratios) são razões que incluem o número 7. A principal razão é 7:4 e corresponde ao intervalo de sétima menor. A diferença entre a nota Sib da escala pitagórica e a de 4:7 chama-se coma de sétima menor X, expressa por

$$X = \frac{\left(\frac{2^4}{3^2}\right)}{\left(\frac{7}{2^2}\right)} = \left(2^4 \cdot 3^{-2}\right)\left(7 \cdot 2^{-2}\right)^{-1} = 7^{-1} \cdot 3^{-2} \cdot 2^6 = \frac{64}{63}.$$
 (1)

A coma de sétima menor equivale a 27,264091795 centos; no entanto, para calcular intervalos em centos basta a precisão de centésimos, ou seja, 27,26 centos.

Modificando-se a fórmula (1), a sétima menor VII_m é expressada da seguinte maneira

$$VII_{m} = 7 \cdot 2^{-2}$$

$$= (2^{4} \cdot 3^{-2})(7^{-1} \cdot 3^{-2} \cdot 2^{6})^{-1}$$

$$= 2^{\frac{10}{12}}(3^{12} \cdot 2^{-19})^{-\frac{2}{12}}(7^{-1} \cdot 3^{-2} \cdot 2^{6})^{-1}$$
(2)

A sétima menor VII_m é transformada em expressão centesimal por

$$VII_{\rm m} = 1000 - \frac{2}{12}P - X \tag{3}$$

A fórmula (3) demonstra que a sétima menor é a sétima menor pitagórica menos a coma de sétima menor. Ela vale 968,83 centos, sendo portanto uma coma de sétima menor, 27,26 centos, menor que a sétima menor da escala pitagórica, que vale 996,09 centos.

A sétima harmônica fica duas oitavas acima da sétima menor $VII_{\rm m.}$ Usando-se a fórmula (3), a sétima harmônica é expressa da seguinte maneira

$$VII_{m} + 2VIII = \left(1000 - \frac{2}{12}P - X\right) + 2 \times 1200$$

$$= 3400 - \frac{2}{12}P - X$$
(4)

A fórmula (4) é reversível à razão por

$$VII_{mS} + 2VIII = 2^{\frac{34}{12}} (3^{12} \cdot 2^{-19})^{-\frac{2}{12}} (7^{-1} \cdot 3^{-2} \cdot 2^{6})^{-1}$$
= 7

Com a fórmula (4) transformam-se em cento as razões de sete.

2. Quinta das Razões de Sete

As duas quintas $V_{\rm S}$ descendentes que formam uma sétima menor $VII_{\rm m}$ são calculadas da seguinte maneira

$$-2V_{s} + 2VIII = 1000 - \frac{2}{12}P - X$$

$$V_{s} = \frac{1}{2} \left\{ 2 \times 1200 - \left(1000 - \frac{2}{12}P - X \right) \right\}$$

$$= 700 + \frac{1}{12}P + \frac{1}{2}X$$
(5)

A fórmula (5) é reversível à razão com a expressão

$$V_{s} = 2^{\frac{7}{12}} (3^{12} \cdot 2^{-19})^{\frac{1}{12}} (7^{-1} \cdot 3^{-2} \cdot 2^{6})^{\frac{1}{2}}$$

$$= 7^{-\frac{1}{2}} \cdot 2^{2}$$
(6)

A fórmula (6) de razão é transformada em expressão centesimal por

$$V_{s} = -\frac{1}{2} \left(3400 - \frac{2}{12} P - X \right) + 2 \times 1200$$

$$= 700 + \frac{1}{12} P + \frac{1}{2} X \tag{7}$$

Esta quinta da fórmula (7) tem meia coma de sétima menor a mais que a quinta pura. Tem 715,59 centos, sendo portanto 13,63 centos maior que a quinta pura.

A diferença entre sete oitavas e doze quintas $V_{\rm S}$ no círculo descendente é representada da seguinte maneira

$$7VIII - 12V_{s} = 7 \times 1200 - 12\left(700 + \frac{1}{12}P + \frac{1}{2}X\right)$$
$$= -(P + 6X) \tag{8}$$

A fórmula (8) é reversível à razão por meio de

$$-(P+6X) = (3^{12} \cdot 2^{-19})^{-1} (7^{-1} \cdot 3^{-2} \cdot 2^{6})^{-6}$$
$$= 7^{6} \cdot 2^{-17}$$

Seu valor é -187,04 centos.

Como a discrepância é grande, esta quinta não é adequada para formar uma escala praticável. Alguns intervalos são usados apenas para estudo.

3. Quinta Diminuta das Razões de Sete

O intervalo na razão de 5:7 é a quinta diminuta $V_{\rm dS}$, e expressa por

$$V_{dS} = 7 \cdot 5^{-1} \tag{9}$$

A fórmula (9) é transformada em cento da seguinte maneira

$$V_{dS} = \left(3400 - \frac{2}{12}P - X\right) - \left(2800 + \frac{4}{12}P - K\right)$$
$$= 600 - \frac{6}{12}P + K - X. \tag{10}$$

Vale 582,51 centos.

A fórmula (10) é reversível à razão por meio da expressão

$$V_{ds} = 2^{\frac{6}{12}} (3^{12} \cdot 2^{-19})^{\frac{6}{12}} (5^{-1} \cdot 3^4 \cdot 2^{-4}) (7^{-1} \cdot 3^{-2} \cdot 2^6)^{-1}$$

= $7 \cdot 5^{-1}$

4. Terça Maior das Razões de Sete

O intervalo de 7:9 é a terça maior na razão de sétima, III_s , e expressa-se da seguinte maneira

$$III_{\rm S} = \frac{9}{7} = 7^{-1} \cdot 3^2 \tag{11}$$

A fórmula (11) é transformada em cento por meio de

$$III_{s} = -\left(3400 - \frac{2}{12}P - X\right) + 2\left(1900 + \frac{1}{12}P\right)$$

$$= 400 + \frac{4}{12}P + X \tag{12}$$

A fórmula (12) demonstra que a terça maior na razão de sétima III_s tem uma coma de sétima menor a mais que a terça maior da escala pitagórica. Com valores em centos das comas $P \, \mathrm{e} \, X$, o valor da terça maior III_s é calculada em 435,08 centos.

A terça maior III_S é a diferença entre o Ré de uma oitava acima da escala pitagórica, 4:9, e a sétima menor VII_m , 4:7. Essa diferença expressa-se por

$$III_{s} = (II_{P} + VIII) - VII_{ms}$$

$$= \left(200 + \frac{2}{12}P + 1200\right) - \left(1000 - \frac{2}{12}P - X\right)$$

$$= 400 + \frac{4}{12}P + X$$
(13)

A fórmula (13) é modificada da seguinte maneira

$$III_{s} = (II_{P} + VIII) - VII_{mS}$$

$$= 2V - (-2V_{S} + 2VIII)$$

$$= 2V + 2V_{S} - 2VIII$$

$$= 2\left(700 + \frac{1}{12}P\right) + 2\left(700 + \frac{1}{12}P + \frac{1}{2}X\right) - 2 \times 1200$$

$$= 400 + \frac{4}{12}P + X$$
(14)

A fórmula (14) demonstra que a terça maior III_s é formada com duas quintas pitagórica V e duas quintas V_s .

A fórmula (12) é reversivel à razão por meio de

$$III_{S} = 2^{\frac{4}{12}} (3^{12} \cdot 2^{-19})^{\frac{4}{12}} (7^{-1} \cdot 3^{-2} \cdot 2^{6})$$
$$= 7^{-1} \cdot 3^{2}$$

5. Terça Menor das razões de Sete

A terça menor na razão de sétima III_s é a razão de 6:7 e expressa-se assim

$$III_{mS} = \frac{7}{6} = 7 \cdot 3^{-1} \cdot 2^{-1} \tag{15}$$

A fórmula (15) é transformada em cento da seguinte maneira

$$III_{ms} = \left(3400 - \frac{2}{12}P - X\right) - \left(1900 + \frac{1}{12}P\right) - 1200$$
$$= 300 - \frac{3}{12}P - X \tag{16}$$

O valor é 266,87 centos.

A terça menor III_s é a diferença entre a sexta menor VII_m na razão de 4:7 e a quinta pura V na razão de 2:3 e representa-se por

$$III_{mS} = VII_{S} - V$$

$$= \left(1000 - \frac{2}{12}P - X\right) - \left(700 + \frac{1}{12}P\right)$$

$$= 300 - \frac{3}{12}P - X$$
(17)

As fórmulas (16) e (17) são reversíveis à razão da seguinte maneira

$$III_{mS} = 2^{\frac{3}{12}} (3^{12} \cdot 2^{-19})^{-\frac{3}{12}} (7^{-1} \cdot 3^{-2} \cdot 2^{6})^{-1}$$
$$= 7 \cdot 3^{-1} \cdot 2^{-1}$$

6. Tom das Razões de Sete

O tom na razão de sétima $T_{\rm S}$ é de 7:8 e expressa-se por

$$T_{\rm s} = \frac{8}{7} = 7^{-1} \cdot 2^3 \tag{18}$$

A fórmula (18) é transformada em cento da seguinte maneira

$$T_{s} = 3 \times 1200 - \left(3400 - \frac{2}{12}P - X\right)$$
$$= 200 + \frac{2}{12}P + X \tag{19}$$

O tom $T_{\rm S}$ é a diferença entre uma oitava $V\!III$ e a sexta menor $V\!II_{\rm m}$ representada pela expressão

$$T_{s} = VIII - VII_{s}$$

$$= 1200 - \left(1000 - \frac{2}{12}P - X\right)$$

$$= 200 + \frac{2}{12}P + X$$
(20)

As fórmula (19) e (20) são reversíveis à razão por meio da seguinte expressão

$$T_{s} = 2^{\frac{2}{12}} (3^{12} \cdot 2^{-19})^{\frac{2}{12}} (7^{-1} \cdot 3^{-2} \cdot 2^{6})$$
$$= 7^{-1} \cdot 2^{3}$$